C 43200	(Pages: 2)	Name
		Reg No

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Physics/Applied Physics

PHY 2B 02/APH 2B 02-MECHANICS-II

(2020—2022 Admissions)

Time: Two Hours

Maximum: 60 Marks

The symbols used in the question paper have their usual meanings.

Section A (Short Answer Type)

Answer all questions in two or three sentences. Each correct answer carries a maximum of 2 marks.

- 1. Define Lorentz contraction.
- 2. Differentiate between phase velocity and group velocity.
- 3. With example, define inertial frame of references.
- 4. State law of equal areas. How is it related to angular momentum?
- 5. Define central force motion and list any two features of central force motion.
- 6. What is forced damped harmonic oscillator? Write the expression.
- 7. Give the characteristics of Simple Harmonic Motion.
- 8. What are the condition for nondispersive wave.
- 9. State Fourier's theorem?
- 10. A famous magic trick involves a performer singing a note toward a crystal glass until the glass shatters. Explain why the trick works in terms of resonance and natural frequency.
- 11. Explain the term resonance.
- 12. Define superposition of wave pulses.

(Ceiling - 20)

Turn over

2 C 43200

Section B (Paragraph / Problem Type)

Answer all questions in a paragraph of about half a page to one page.

Each correct answer carries a maximum of 5 marks.

- 13. The equation of a damped simple harmonic motion is $m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0$. Then find the angular frequency of oscillation.
- 14. Derive the equation for Energy Dissipation in the Damped Oscillator.
- 15. The centre of mass of a 1600 kg car is midway between the wheels and 0.7 m above the ground. The wheels are 2.6 m apart.
 - (a) What is the minimum acceleration A of the car so that the front wheels just begin to lift off the ground?
 - (b) If the car decelerates at rate *g*, what is the normal force on the front wheels and on the rear wheels?
- 16. Define central force. Give some examples of central forces and Examples of central forces are.
- 17. Define Q factor. Explain Q factor of any harmonic oscillator.
- 18. Write a note on normal modes.
- 19. With necessary derivations explain the energy in a mechanical wave.

(Ceiling - 30)

Section C (Essay Type)

Essays.

Answer in about two pages, any one question. Answer carries 10 marks.

- 20. Briefly explain the physics in a rotating system. Define Coriolis force.
- 21. Explain central force motion as a one body problem. Derive the general solution.

 $(1 \times 10 = 10 \text{ marks})$